The generator matrix

 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  X  X  X  X  X  X  X  1  1  1  1  1  1  1  1  1  1  1  X  X  X  X  X  X  X  X  1  1  1 X^2  1 X^2 X^2  0 X^2  0  0  0  X
 0 X^2  0  0  0 X^2 X^2 X^2  0  0  0 X^2  0 X^2 X^2 X^2  0  0  0 X^2  0 X^2 X^2 X^2 X^2  0  0  0 X^2 X^2 X^2  0  0  0 X^2  0 X^2 X^2 X^2  0  0 X^2 X^2  0 X^2 X^2  0  0  0  0 X^2  0 X^2 X^2 X^2 X^2 X^2 X^2 X^2  0
 0  0 X^2  0 X^2 X^2 X^2  0  0  0 X^2 X^2 X^2 X^2  0  0  0  0 X^2 X^2 X^2 X^2 X^2  0  0  0 X^2 X^2 X^2  0  0  0  0 X^2 X^2 X^2 X^2  0  0  0 X^2 X^2  0 X^2 X^2  0  0  0  0 X^2 X^2 X^2 X^2  0  0  0  0 X^2 X^2  0
 0  0  0 X^2 X^2  0 X^2 X^2  0 X^2 X^2  0  0 X^2 X^2  0  0 X^2 X^2  0  0  0 X^2 X^2  0 X^2 X^2  0 X^2 X^2  0  0 X^2 X^2  0  0 X^2 X^2  0 X^2 X^2  0  0  0 X^2 X^2  0  0 X^2 X^2  0  0 X^2 X^2  0  0 X^2 X^2  0  0

generates a code of length 60 over Z2[X]/(X^3) who�s minimum homogenous weight is 60.

Homogenous weight enumerator: w(x)=1x^0+56x^60+1x^64+4x^68+2x^72

The gray image is a linear code over GF(2) with n=240, k=6 and d=120.
As d=120 is an upper bound for linear (240,6,2)-codes, this code is optimal over Z2[X]/(X^3) for dimension 6.
This code was found by Heurico 1.16 in 0.0856 seconds.